Mining Unstructured Text Online Discussion Data to Understand Group Collaboration: Mixed and Multi-Methods Field Study

California State University Channel Islands Seminar Series

Dr. Evren Eryilmaz 11/09/2021

About Me

Overview

- Motivation and problem identification
- Objectives and special issues/constraints
- A short literature review on
 Big data research perspectives
 Learning analytics
 Community of inquiry framework
- Research questions
- Major Findings
- Comments & questions

Motivation and problem identification

- Criteria-based outcome assessment to transform post-COVID education, diversity, and student success faculty learning committee
- Academic information technology committee
- Establishing successful service-learning project teams is difficult in online settings
- Asynchronous online discussions (AODs) can support developing shared understandings and cultivating a sense of community

Objectives

- Combine the analytical efficiency and scalability of topic modeling, social network analysis, and cluster analysis with theory-driven qualitative content analysis to obtain a comprehensive picture of group collaboration in AODs
- Establish the boundaries of an intermediate cluster within a learning community

Special Issues/Constraints

- Assessment needs to center on educational theories
- Aspects of the final product can be integrated into canvas in the future

Literature Review: Two Big Data Research Perspectives

- Data-driven big data research: Provides answers to situated practical or tactical questions
- Theory-driven big data research: theoretical foundations developed can guide big data research through focus such as variable selection and search for patterns in data

Maass, W., Parsons, J., Purao, S., Storey, V. C., & Woo, C. (2018). Data-driven meets theory-driven research in the era of big data: opportunities and challenges for information systems research. *Journal of the Association for Information Systems*, 19(12), 1.

Johnson, S. L., Gray, P., & Sarker, S. (2019). Revisiting IS research practice in the era of big data. *Information and Organization*, 29(1), 41-56.

Literature Review: Learning Analytics

- Learning Analytics: The measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs
 - Process Focus: Aligns well with constructivism and experiential learning
 - Outcome Focus: Aligns well with behaviorist theory of learning (i.e., test scores)

Siemens, G.; and Long, P. Penetrating the fog: Analytics in learning and education. *EDUCAUSE review*, 46, 5 (2011), 30.

Deeva, G., Willermark, S., Islind, A. S., & Oskarsdottir, M. (2021, January). Introduction to the Minitrack on Learning Analytics. In *Proceedings of the 54th Hawaii International Conference on System Sciences* (p. 1507).

Literature Review: Community of Inquiry

Supporting Discourse SOCIAL COGNITIVE PRESENCE PRESENCE EDUCATIONAL EXPERIENCE Setting Climate Selecting Content TEACHING PRESENCE (Structure/Process)

Garrison, D. R., Anderson, T., & Archer, W. (2010). The first decade of the community of inquiry framework: A retrospective. *The internet and higher education*, *13*(1-2), 5-9.

Research Questions

- 1. What is the social network structure of a COI facilitated by the Canvas AOD tool?
- 2. What are differences of topics among a COI's clusters via topic modeling?
- 3. How and to what extent topic modeling results relate to the COI model's

cognitive presence message-coding schema among a COI's clusters?

Field Study

- 54 senior undergraduate management information systems students in a service-learning project based capstone course
- Male: 58% Female: 42%
- Average age: 21.87 (SD= 3.23)
- Total messages: 470 (M=8.70, SD= 0.96)
- Average number of words per message: 121.48 (SD=32.54)

Learning Community's Sociogram

Learning Community (n =54)							
M SD							
In-degree	5.26	2.14					
Out-degree	5.26	0.80					
Closeness	0.40	0.02					
Betweenness	79.44	33.03					

Cluster Analysis Results

Learning Community (n =54)							
Clusters	Frequency	Proportion					
Peripheral Members	26	0.48					
Intermediate Members	21	0.39					
Central Members	7	0.13					

Literature Review: Community of Inquiry

Garrison, D. R., Anderson, T., & Archer, W. (2010). The first decade of the community of inquiry framework: A retrospective. *The internet and higher education*, *13*(1-2), 5-9.

Topic Modeling Algorithm

Among different algorithms, I employed latent Dirichlet allocation (LAD) because

- There are many guides on how-to-aspects of LDA topic models
- LDA's outputs are easy to visualize

Palese, B., & Piccoli, G. (2020). Evaluating Topic Modeling Interpretability Using Topic Labeled Gold-standard Sets. *Communications of the Association for Information Systems*, 47(1), 16.

https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0

Topic Modeling Algorithm

- Perplexity: Captures a model's uncertainty to predict unobserved documents
- Topic Coherence: Captures the degree of semantic similarity among a topic's top words

Intertopic Distance Map (via multidimensional scaling) PC2 12 13 5 7 PC1 14 17 2 10 3 11 Marginal topic distribution 2% 5% 10%

https://fwd.delabapps.eu/topic_modelling.html

Topic Modeling Results: Peripheral Cluster

Label	Most Frequent Words	Distribution Of Topics
Access to Kaiser and AAA's	kaiser, aaa, insurance, health, access	18%
insurance programs		
Cost of personal health	information, health, sell, personal, google	17%
information		
Digital divide	Individuals, low-income, smartphone, patient, access	15%
HealthATM system usability	usability, people, healthatm, learn, easy	13%
Medical records confidentiality	privacy, security, information, healthcare, records	11%
Off-topic	smart, toilets, lives, weird, comment	10%
Persuasive design	encouragement, help, specific, people, behaviors	8%
PHR adoption in underserved	underserved, populations, system, health, phr	8%
communities		
Total With	in the Peripheral Members Cluster	100%
	Coherence Score	0.53
	Perplexity Score	-5.87

Topic Modeling Results: Intermediate Cluster

Label	Most Frequent Words	Distribution
Rapid application development	rapid, application, development, authors, approach	20%
Usability issues	application, constraint, users, phr, problems	16%
Waterfall development	phase, system, waterfall, authors, development	15%
Building an information system with Google's API	api, application, google, example, program	13%
Gamification systems	gamification, phr, keep, track, service	13%
HealthATM system usability and	people, useful, healthatm, find, easy	10%
usefulness		
Samsung health application	phone, app, Samsung, health, information	7%
Gaps in healthcare	issue, patient, health, care, gap	6%
Total With	100%	
	Coherence Score	0.59
	Perplexity Score	-6.14

Topic Modeling Results: Central Cluster

Label	Most Frequent Words	Distribution Of Topics				
HIPAA Requirements	hipaa, laws, records, privacy, important	23%				
Rapid application development	sdlc, rad, sounds, used, since	20%				
Waterfall development	Waterfall, agree, method, determining, needs	18%				
System Security	api, google, microsoft, security, used	18%				
Design phase in system development lifecycle	sdlc, phase, design, model, system	11%				
Patient activation measure score in healthatm software	pam, healthatm, score, patients, software	10%				
Total Within the Peripheral Memb	100%					
	Coherence Score					
	Perplexity Score	-5.63				

Community of Inquiry Message Coding Schema: Peripheral Cluster

	Per Me (r	ipheral mbers n=26)	Intermedia Members (n=21)		Central Members (n=7)		ANOVA Test Results
Message Category	M	SD	М	SD	М	SD	
Connect idea	s 0.43	0.13	0.33	0.07	0.30	0.07	F(2,51) = 7.27, p = 0.002,
from course	e						$\eta_{\rm p}^{\ 2} = 0.53$
content/reading							•

Message Category	Cluster Pairs	Tukey HSD Q Statistic	Tukey HSD Inference
Connect ideas	Peripheral vs	4.47	** $p < 0.01$
from course	Intermediate		
content/reading	Peripheral vs	4.24	* $p < 0.05$
	Central		
	Intermediate	1.12	insignificant
	vs Central		

Community of Inquiry Message Coding Schema: Peripheral Cluster

	Per Me (1	ipheral embers n=26)	Inter Men (n=	media nbers =21)	Central I (n	Members =7)	ANOVA Test Results
Message Category	Μ	SD	М	SD	Μ	SD	
Information exchange (i.e., a factual question, answer, or clarification)	0.20	0.18	0.09	0.08	0.10	0.05	F(2,51) = 4.30, p < 0.02, $\eta_p^2 = 0.41$

Message Category	Cluster Pairs	Tukey HSD Q Statistic	Tukey HSD Inference
Information	Peripheral vs	3.95	* p < 0.05
exchange (i.e., a	Intermediate		
factual question,	Peripheral vs	2.42	insignificant
answer, or	Central		
clarification)	Intermediate	0.29	insignificant
	vs Central		

Community of Inquiry Message Coding Schema: Intermediate Cluster

	Peripheral Members (n=26)		Intermedia Members (n=21)		Central Members (n=7)		ANOVA Test Results
Message Category	Μ	SD	М	SD	М	SD	
Expressing puzzlement from instructional materials	0.05	0.07	0.14	0.08	0.08	0.08	F(2,51) = 9.05, p < 0.001, $\eta_p^2 = 0.59$

Message Category	Cluster Pairs	Tukey HSD Q Statistic	Tukey HSD Inference
Expressing	Peripheral vs	6.00	** <i>p</i> < 0.01
puzzlement from	Intermediate		
instructional	Peripheral vs	1.36	insignificant
materials	Central		
	Intermediate	2.70	insignificant
	vs Central		

Community of Inquiry Message Coding Schema: Intermediate Cluster

	Peripheral Members (n=26)		Intermedia Members (n=21)		Central Members (n=7)		ANOVA Test Results
Message Category	Μ	SD	М	SD	Μ	SD	
Discussion of comprehension issues and alternate views	0.04	0.07	0.16	0.07	0.12	0.07	F(2,51) = 18.47, p < 0.001, $\eta_p^2 = 0.85$

Message Category	Cluster Pairs	Tukey HSD Q Statistic	Tukey HSD Inference
Discussion of	Peripheral vs	8.53	** <i>p</i> < 0.01
comprehension	Intermediate		
issues and	Peripheral vs	3.66	* p < 0.05
alternate views	Central		
	Intermediate	2.16	insignificant
	vs Central		

Community of Inquiry Message Coding Schema: Central Cluster

	Per Me (I	ipheral embers n=26)	Inter Men (n=	ntermedia Central Members Members (n=7) (n=21)		Members =7)	ANOVA Test Results
Message Category	Μ	SD	М	SD	Μ	SD	
Seeking to reach consensus\ understanding	0.05	0.07	0.03	0.05	0.12	0.01	F(2,51) = 5.49, p = 0.007, $\eta_p^2 = 0.42$

Message Category	Cluster Pairs	Tukey HSD Q Statistic	Tukey HSD Inference
Seeking to reach	Peripheral vs	1.79	insignificant
consensus\	Intermediate		
understanding	Peripheral vs	3.57	* p < 0.05
	Central		
	Intermediate	4.69	** <i>p</i> < 0.01
	vs Central		

Community of Inquiry Message Coding Schema: Central Cluster

	Per Me (I	ipheral embers n=26)	Intermedia Members (n=21)		Central Members (n=7)		ANOVA Test Results
Message Category	Μ	SD	М	SD	М	SD	
Offer solution to comprehension issues	0.04	0.07	0.03	0.05	0.11	0.09	F(2,51) = 4.18, p = 0.02, $\eta_p^2 = 0.43$

Message Category	Cluster Pairs	Tukey HSD Q Statistic	Tukey HSD Inference		
Offer solution to	Peripheral vs	0.78	insignificant		
comprehension	Intermediate				
issues	Peripheral vs	3.58	* p < 0.05		
	Central				
	Intermediate	4.02	* p < 0.05		
	vs Central				

Summary of Key Findings

- Peripheral Cluster (n=26)
 - Participants focused on the topics: Access to Kaiser and AAA's insurance programs, cost of personal health information, and digital divide
 - Their messages connected these topics to their personal experiences and involved factual questions, answers, clarifications
- Intermediate Cluster (n=21)
 - Participants focused on the topics: Rapid application development, usability issues, and waterfall development
 - Their messages expressed puzzlements. They discussed comprehension issues/alternative viewpoints

Summary of Key Findings

- Central Cluster (n=7)
 - Participants focused on the topics: HIPAA requirements, rapid application development, waterfall development, and system security
 - Their messages offered potential solutions to the comprehension issues and they tried to reach consensus on those solutions

Message Lexical Complexity

	Central Members' Messages (n=91)		Intermediate Members' Messages (n=150)		Peripheral Members' Messages (n=61)		ANOVA Test Results
	Μ	SD	Μ	SD	Μ	SD	
Message Lexical Complexity Score	5.21	1.24	5.36	1.26	5.48	1.33	F(2,299) = 0.80, p = 0.45, $\eta_p^2 = 0.07$

B. Thoms, E. Eryilmaz, N. Dubin, R. Hernandez, S. Colon-Cerezo, "Real-Time Visualization to Improve Quality in Computer Mediated Communication," Web Intelligence Journal, September, 2019.

Thank you For Your Attention

Your Comments and Questions are welcomed. Please address feedback to: evren.eryilmaz@csus.edu

